A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed

نویسنده

  • Alexander I. Barvinok
چکیده

We prove that for any dimension d there exists a polynomial time algorithm for counting integral points in polyhedra in the d-dimensional Euclidean space. Previously such algorithms were known for dimensions d =1,2,3, and 4 only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sampling Integer Points in Polyhedra

We investigate the problem of sampling integer points in rational polyhedra provided an oracle for counting these integer points. When dimension is bounded, this assumption is justified in view of a recent algorithm due to Barvinok [B1,B2,BP]. We show that the exactly uniform sampling is possible in full generality, when the oracle is called polynomial number of times. Further, when Barvinok’s ...

متن کامل

On integer points in polyhedra

We give an upper bound on the number of vertices of PI, the integer hull of a polyhedron P, in terms of the dimension n of the space, the number m of inequalities required to describe P, and the size ~ of these inequalities. For fixed n the bound is O(mn~n-1). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1 qE in...

متن کامل

Counting Lattice Points in Polyhedra

We present Barvinok’s 1994 and 1999 algorithms for counting lattice points in polyhedra. 1. The 1994 algorithm In [2], Barvinok presents an algorithm that, for a fixed dimension d, calculates the number of integer points in a rational polyhedron. It is shown in [6] and [7] that the question can be reduced to counting the number of integer points in a k-dimensional simplex with integer vertices ...

متن کامل

On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension

We describe a simpliication of a recent polynomial-time algorithm of A. I. Barvinok for counting the number of lattice points in a poly-hedron in xed dimension. In particular, we show that only very elementary properties of exponential sums are needed to develop a polynomial-time algorithm.

متن کامل

Fast Unimodular Counting

This paper describes methods for counting the number of non-negative integer solutions of the system Ax = b when A is a non-negative totally unimodular matrix and b an integral vector of fixed dimension. The complexity (under a unit cost arithmetic model) is strong in the sense that it depends only on the dimensions of A and not on the size of the entries of b. For the special case of “continge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993